Search results

1 – 1 of 1
Article
Publication date: 30 June 2022

Arun Bangotra and Sanjay Sharma

This study aims to investigate the impact of surface waviness on the static performance parameters of hydrodynamic journal bearings operating with lubricants containing copper…

Abstract

Purpose

This study aims to investigate the impact of surface waviness on the static performance parameters of hydrodynamic journal bearings operating with lubricants containing copper oxide (CuO) and cerium oxide (CeO2) nanoparticles.

Design/methodology/approach

The static performance parameters of bearings with surface waviness and the addition of nanoparticles in lubricants were calculated using the nondimensional form of Reynolds equation and finite element method. Static performance parameters are calculated at different waviness numbers in the circumferential, axial and both directions at various wave amplitudes with variable viscosities of lubricants with nanoparticles using the viscosity equation forming a relationship between the relative viscosity, temperature and weight fraction of nanoparticles in lubricant developed from the experimental results.

Findings

The computed results indicate that the impact of waviness on the bearing surface enhances the load capacity, reduces friction coefficient, and is more effective in the circumferential direction than in the axial direction or in both directions. The addition of CuO and CeO2 to the lubricant enhanced its viscosity which further improved the steady-state parameters of the wave bearing.

Research limitations/implications

This study is based on a numerical technique, which has significant limitations, and the simulated results must be tested experimentally.

Practical implications

The current findings will be beneficial for designers to improve the performance of hydrodynamic journal bearings.

Originality/value

The calculated results demonstrate that the combined effect of the surface waviness on bearings and the addition of nanoparticles to lubricants can greatly increase the performance of hydrodynamic journal bearings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 1 of 1